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A NOVEL METHOD OF PREPROCESSING AND SPIKE ENCODING
OF ELECTROCARDIOGRAPHIC SIGNAL FOR MULTI-STABLE
SPIKING NEURONAL NETWORKS APPLICATION

Recent works in artificial intelligence propose that hardware and software solutions can be trained and
taught instead of hard-coded algorithms. A key challenge for neural modeling is to explain how a continuous
stream of multi-modal input from a rapidly changing sensory environment can be processed by artificial neu-
ronal networks (ANN) in real-time. Our approach is based on a robust computational model of the spiking
neuronal network (SNN) with multi-stable internal neurons. Investigated the applicability of the SNN model
for the recognition of physiological signal patterns on noisy continuous input stream to extract common signal
features of electrocardiographic signal (ECG). Number of detecting features was limited in this work only
with QRS complex extraction and exactly R-peaks time position. One of the important challenge in signal data
recognition relate to the quality of preprocessing and encoding method of input ANN's data. The novelty of our
approach lies in using robust and effective raw-data preprocessing and encoding spatial-temporal properties
of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a SNN
computation model; approach was developed, implemented and validated on real signals from MITDB and

in-house ECG records. Also, efficiency of encoding input data stage was shown.
Key words: electrocardiogram, artificial neuronal models, QRS detection, heart rate estimation, spiking

neuronal networks, SNN.

Introduction. Novel ways of programming by
training, teaching, imitation and reward are already
being demonstrated in portable devices with the help
of in-silico chips behaving like neurons, i.e. neuro-
morphic chips [1; 2]. A central problem of such sys-
tems is the training of biological neural structures
for a particular task and the implementation of the
neural structure to the hardware system [3]. For the
past decades, Artificial Neural Networks (ANN) have
evolved to the point of being currently very close
in behavior to biological neural structures [4—6]. In
this paper, studied basic training problem of biolog-
ical neural networks using a biologically realistic
model of spiking neurons. A simple pattern recog-
nition problem is applied to this model. Physiologi-
cal pattern was chosen for recognition solution, this
is electrocardiographic signal (ECG). Detection of
ECG QRS complex provides fundamental feature for
further detection of other waveforms and subsequent
automatic analysis [7—9]. However, characteristics of
ECG increase the difficulty of automatic ECG wave-
form detection [10]. Firstly, the morphology of ECG
waveforms alters from person to person. Secondly,
ECG signal frequently presents noise components
of various origins. For example, the movement of
patients’ muscle can generate high-frequency noises
and respiration may provoke baseline wander. Other
noise components have electrical or mechanical ori-
gins. The recorded electrical data are often post-pro-

cessed, either locally on the sensor [6] or on a device
[7] attached to the sensor to estimate R-to-R peaks
time intervals and heart rate. QRS pattern identifi-
cation from ECG signal is fundamental approach to
heart-rate estimation and heart rate variability (HRV)
analysis [10]. Although QRS detection has achieved
significant maturity over time [8], recent advances in
wearable healthcare [5; 9] have motivated researchers
to research QRS detection again. This is due to fol-
lowing facts: a) ECG readings from wearable sensors
are contaminated with motion artifacts and baseline
drifts; b) devices integrating wearable sensors are
constrained in terms of area, power consumption and
computational capabilities. In this work, spiking neu-
ral network (SNN) [11] with internal neurons mul-
ti-stability [19] for QRS complex detection and fur-
ther R-to-R peaks intervals calculation was applied.
Internal neurons multi-stability leads to capability of
diverse spike regimes generation [13], such as spik-
ing, bursting, oscillations, etc. Last works shows
great efficiency of SNN. In [14], Maass draws a ret-
rospective of the techniques used for modeling neural
networks and presents the third generation of neural
are spiking neuronal networks. Additionally, previous
experience shows very good perspective for imple-
mentation of such neuronal system to the hardware
architecture. But SNN’s are still very sensitive to data
representation form and quality of input signal. In
this work we propose universal, easy to calculate and
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integrate into hardware ECG raw-data preprocessing
methodology and spike encoder for SNN implemen-
tation. To validate efficiency of proposed algorithms
the recurrent SNN was built and results of detecting
standard ECG signal QRS feature compared for cases
with and without preprocessing stage. Also, system
energy consumption of encoding and data processing
method need to explore.

Methods. Raw-data preprocessing. The initial
step of the ECG raw-data features extraction relates to
the of noise removal from the signal. Noises from dif-
ferent origin always mix with ECG signal and cause
baseline drifts, artifacts and small-scale oscillations.
In this work, a cascaded digital filters configuration
is used for removal of three major noises of baseline
drift, power line interference and EMG noise [8—10].
Schematic diagram of preprocessing tract shows on
Figure 1.

Each stage of filtration implemented with
MATLAB environment. After common noise filter-
ing, signal squared and processed with smoothing
moving average filter (see Fig. 1). The squared and
smoothed signal is good enough for accurate detec-
tion of peaks in ECG signal as well for deterministic
methods and SNN approach. Firstly, low-pass filter
designed with transfer function:

H(Z):m’ (1)

The cutoff frequency is about 15 Hz, the delay is
five samples, and the gain is 36. Figure 2a show the
magnitude and phase responses of the corresponding
low-pass filter. This filter can effectively decrease
the noise which origin from the power supply inter-
ference (50/60 Hz noise), assume that the sampling
frequency of ECG signalsis equal to 250 Hz. Also,
high-pass filtering applied to the signal to decrease
influence of noise with low frequencies components,
such as baseline wondering or drift. High-pass filter
designed with transfer function:

H(2)- (—1+(312+zZI; %) ’

The cutoff frequency of high-pass filter is 5 Hz.
Figure 25 show the magnitude and phase responses of
the corresponding high-pass filter. After high-pass fil-
tration, raw-data processed with derivative filter with
transfer function:
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By next step, signal squaring for nonlinearity
enhance the dominance peaks and increase of sig-
nal to noise relation. Figure 3a shows example of
squared ECG signal. At the last stage of data filtra-
tion squared signal is processed with moving aver-
age filter (MWI). A weighted moving average fil-
ter was used for the output signal smoothing [10].

Raw ECG signal

———» LowpassFilter [—» High-passFilter |

Derivative Filter 3

Moving Average Qutput Signal
—

Squaring ] Filtration

Fig. 1. Common block-diagram of ECG-signal filtration tract. Consist of: low-pass filter, high-pass filter,
derivative filter, signal squaring, moving average filtration stage
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Fig. 2. a — magnitude (top) and phase (bottom) responses of ECG low-pass (LP) filter; b — for high-pass
(HP) filter; x-axis frequency of signal in Hz; y-axis magnitude of signal in dB for magnitude response
and Phase in degrees for phase response, respectively

Tom 30 (69) 4. 1N2 32019
192



InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

Signal is averaged to remove high frequency noise
(0.150 seconds length):

y(nT):%[x(nT_(N_1)T)+x(nT—(N—2)T)+...+x(nT)}, 4)

Result signal after MWI filtration of previously
squared signal shown on Figure 35.

ORS features extraction. Universal robust algo-
rithm of QRS complex detection method was dis-
covered. Method can be easily ported on hardware
architecture. To solve this problem, robust modifica-
tion of Pan-Tompkins [15, 16] QRS detection algo-
rithm was proposed. At this point in the algorithm,
previous steps have generated a roughly pulse-
shaped waveform at the output of the signal, which
shown on Fig.3b. The decision as to whether a pulse
corresponds to a QRS complex is performed with
an adaptive thresholding operation. When analyzing
the amplitude of the MWI output, the algorithm uses
two threshold values (THRg;; and THRyq;s5, appro-
priately initialized during a brief 2 second trainings
phase) that continuously adapt to changing ECG
signal quality. The first pass uses these thresholds to
classify each non-zero sample (CURRENT PEAK)
as either signal or noise:

- If CURRENT PEAK>THR,;, that location is
identified as a QRS complex candidate and the sig-
nal level (SIG,y) is updated: SIG,,=0.125 *CUR-
RENT PEAK + 0.875 * SIG, .

S

sampes

a

- If THRys<CURRENT PEAK< THRgg, then
that location is identified as a noise peak and the
noise level (NOISE, ) is updated: NOISE, ,=0.125
*CURRENT PEAK + 0.875 * NOISE .

Based on new estimates of the signal and noise lev-
els (SIG, .y and NOISE, .., respectively) at that point
in the ECG, the thresholds are adjusted as follows:
THRg,; = NOISE, ;y + 0.25 * (SIG,, — NOISE, 1,y).
THRyoisg = 0.5 * THRg,s. These adjustments lower
the threshold gradually in signal segments that are
deemed to be of poorer quality. In the thresholding
step above, if CURRENT PEAK< THRg, the peak
is deemed not to have resulted from a QRS complex.
However, an unreasonably long period has expired
without an abovethreshold peak, the algorithm will
assume a QRS has been missed and perform a search
back. The minimum time used to trigger a search back
is 1.66 times the current R-to-R peak time period.
Also, it’s impossible for a detect QRS complex if
it lies within 200ms after a previously detected one
with due to physiological refractory period.Example
of detection processing show on Figure 4.

Spike encoder. Next important task is to create
robust and efficient mechanism to encoding input
analog signal to spiking sequence, which conduct
directly to SNN inputs. Moreover, this implementa-
tion need to be very robust and easily to implement
on hardware structures.
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Fig. 3. a — squared normalized ECG signal after filtration stage; » — moving average filtration effect with
detected R-peaks (circles) and detector levels (signal level — red dashed line; noise level — black dashed line;
adaptive threshold — green dashed line). x-axis — samples number of signal; y-axis — amplitude of normalized
signal in arbitrary units (a. u.)
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Fig. 4. Detection of ECG QRS complexes and R-peaks timestamps with proposed deterministic reference
algorithm. Circles highlight detected R-peaks timestamps, red dashed line — signal level;
green dashed line — adaptive threshold; black dashed line — noise level. x-axis — signal sample number;
y-axis — normalized signal amplitude in arbitrary units
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Temporal coding [17] encodes information as
inter-spike intervals, capturing the spatio-temopral
structure of the input signal. For ECG QRS detec-
tion, temporal characteristics around QRS com-
plexes need to encoded as inter-spike intervals and
therefore, temporal coding is adopted in this work
[17]. The spike encoder encodes input ECG signal to
inter-spike intervals using a combination of thresh-
old modulators, voltage comparator, spike generator
and a timer. To prevent aliasing effect, method of
adapting the timer interval in response to the input
waveform was realized. This will allow our SNN
to better distinguish the two spike trains, further
improving accuracy. One approach to adapt timer
intervals is by setting its clock frequency to be pro-
portional to the highest Fourier component extracted
from the waveform. Clock frequency FCLK depends
on the signal slope as peace-wise function with two
saturation levels:

Feui (A1) =

FCl_Kimfn’ FCLK < FCLKmin

F, -k,
= M * (A/O - a) + FCLI(me’ FCLKJn[n <Fog < FCLKfmax ,(8)

k
F, CLK max> F k2 F, CLK_max

where F ¢ .. maximum of timer clock frequency
of timer, F x ,;, minimum of timer clock frequency,
A,, frequency of the input’s signal most significant fre-
quency harmonica (highest amplitude of non-DC peak
of Discrete Fourier Transformation). Parameters k and
a were constants during all simulations, relate to the
certain frequency parameters of input ECG signals and
let k=14.0 and a=1.0 Hz, respectively. Minimum timer
clock frequency also constant and equal F, ¢, =5 Hz,
maximum frequency Feig .., varied from 100 to
1000 Hz for power consumption exploration.

The working principle of the spike encoder is
described by following scenarios: a) ECG signal is
rising; b) ECG signal is falling and ¢) ECG signal is
stable within a time window A. The encoding is based
on two thresholds L, and U, (U,>L,,). Voltage
comparisons are performed at a fixed interval con-
trolled using the timer. At every interval, the compar-
ator is enabled to compare the ECG voltage and the
threshold Uy,,. For simplicity, assume that the ECG
signal is rising. The voltage comparison is positive,
triggering the following sequence of events:

- threshold update: L, = U, and Uy, = U, + A;

- enable spike generator to emit one spike;

- restart timer and return to wait.

If the result of the comparison is negative (mean-
ing the ECG signal is either falling or stable within A),
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a second comparison is performed, where the ECG
voltage is compared with the threshold L. If this
comparison is positive and ECG signal is falling, the
following sequence of events are triggered:

- threshold update: U, =L, and L, =L, — A;

- restart timer and return to wait.

If the result of the second comparison is also neg-
ative, when the ECG signal is stable within A, thresh-
olds are not updated and timer is restarted. Following
are the specific basicrules of this approach. a) Thresh-
old updates are performed to track the ECG signal in
the upward or downward directions. b) No spikes are
generated when the ECG signal is falling. This is a
design choice used in this work as the spatio-tempo-
ral characteristics of the QRS can be captured using
the rising part of the voltage waveform. ¢) No spikes
are generated if the ECG signal is stable.

Spiking neuronal network. The proposed neural
network is a simulation of spiking neuronal network
[18] based on multi-stable neurons, which occurs
due to metrical asymmetry of active dendritic struc-
ture as shown before at [19]. Active spiking func-
tionality of each neuron described by differential
equations:

V' =0.04v> +5v + 140 —u + I,

u'=a(bv-u) ’ ©)
system reset to the initial state after spike gener-
ation:
Veoc
u«—u-+d,

if v>30mV then (10)

Each neuron has three-stable states due to their
dendritic metrical asymmetry [19]. Stable states of
internal neurons defined by the internal structure cur-
rent distribution I, over the whole structure. Neuronal
structure consists of three layers: input, recurrent and
output. The first layer is the input layer, which gen-
erates spikes (encoded directly from the input ECG).
The second layer is the recurrent layer and consists
of N = Nj, + N, recurrently connected neurons, where
N; is the number of excitatory neurons and NI is the
number of inhibitory neurons. Current framework
consists of 1000 internal neurons with proportion
N; = 0.25 N;. Connections between two particular
cells are arranged with probability calculated accord-
ing to the rule:

P(D) =C * exp(i_D (f’ B)j, (7

where D (A, B) stands for the Euclidean dis-
tance between two cells A and B, and A is the den-
sity of connections. Parameter C depends on the
type of pre-synaptic and postsynaptic neurons, that
is, whether they are the excitatory (Ex) or inhibi-
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tory (Inh) cells. In our simulations, the parameter
C is set as: Cg,_, = 0.3 (for connections between
two excitatory neurons), Cg;,, = 0.2 (for connec-
tions between excitatory and inhibitory neurons),
Chunn = 0.1 (for connections between two inhibitory
neurons), Cy,, g, = 0.4 (for connections between inhib-
itory and excitatory neurons. Initial synaptic strengths
W, = 0.0045 uSim/cm?. Changes in synaptic strength
are bounded between 0 and 10*W,. Synaptic con-
nection delays are selected randomly between 1ms
and 2ms. The output level represented by two sim-
ple bi-stable neurons with active dendritic structure
enhanced, which gather synaptic inputs from neu-
rons of second layer and is able to generate single
spikes in response to a large number of simultane-
ous spikes from recurrent neurons of second layer.
One neuron which reacting when R-peak of QRS
complex detected and second test neuron for com-
parison between learning and no stimulation. Out-
put neuron work in following manner: generation
of spike occurs only when R-peak of QRS complex
was detected and no generate spike, when no QRS
complex was detected. Synaptic weight updates
are disabled after a time interval Ti. The time inter-
val 0 (start of ECG sample) to Ti is training phase
of the spiking neural network. In this phase, weights
are updated using spike timing dependent plasticity
(STDP). STDP is a rule for neurons to strengthen or
weaken their connections according to their degree of
synchronous firing [20, 21, 22, 23 ,24]. With the func-
tion W(x) defining the order of decrease or increase
of strength depending on the synchrony of spiking
between pre- and post-synaptic neurons, expressed in
the following manner:

At

A, exp(:), for At >0

AW = , ®)

At

T_

A exp[ ), other wise

All input ECG raw-data for network learning and
QRS detection algorithm testing divide on two cate-
gories by the source: ECG signal database MITDB,
and ECG signals which registered in-house in our
laboratory with certified 12-lead ECG machine
(CE, FDA). All samples from database was chosen
randomly. Sampling frequency of input data was
250 Hz. Absolute values of amplitudes measure in
uV. All simulations discussed in this paper were pro-
cessed in the MATLAB environment.

Results. All results of the work can be separated
on three main series ofexperiments. In first series,
presented efficiency of QRS detection using signal
pre-processing and deterministic algorithm, which
was describe above. In second part, stability and effi-

ciency of ECG signal encoder with help of proposed
algorithm was estimated, third part connected to effi-
ciency estimation of proposed SNN under presence
of input preprocessing filtration and without.

To estimate an accuracy of proposed system for
each RR interval extraction used Mean Average Per-
cent Error (MAPE):

_1E la, — bl
MAPE—NZ[ a ]*100, (11)

i=0

where MAPE calculated as absolute difference
between the actual RR interval ai and estimated RR
interval pi and N is the number of one-minute seg-
ments in the given ECG sample.

a) Software signal features extractor validation.
Algorithm was successfully tested on 10 different
ECG records with duration trimmed by 300 seconds.
Signal necessary preprocessed with proposed above
digital filtration (see Figure 1). Accuracy report and
results of validation shown in Table 1. In our case,
best case MAPE was 0.32% and worst case - 5.0%,
respectively.

Table 1
Accuracy results of reference method
Total |  F2ISe False 1 nyApE,
# Record beats Positive, | Negative, %
# R-peaks | # R-peaks
1 321 0 0 0.0
2 425 0 6 1.4
3 375 0 0 0.0
4 272 0 5 1.8
5 290 1 3 1.3
6 285 2 2 1.4
7 304 1 0 0.32
8 398 4 2 1.5
9 361 0 4 1.1
10 326 13 1 5.0

b) ORS extraction with SNN. Example of input-out-
puttime dependent relation for the output neuronal
layer shown in Figure 6a. Need to add, that shown
example could be named as case of well-trained net-
work and results can be easily explained. Increasing
of input spikes concentration on dendritic structure of
output neuron leads to generation output spike, which
explained aspresence of R-peak at certain moment of
time in input signal. SNN’s activity with time shown
on Figure 6b. Extracted R-to-R intervals sequence
shown on Figure 6c.

Figure 7 plots the comparative relation of aver-
age RR intervals estimation accuracy using SNN
approach for five MITDB records and five internal

195



Bueni sanucku THY imeni B.1. Bepnancbkoro. Cepisi: TexHiuHi Hayku

Output Layer
2

I A

Py
L b TP Bt S

L L TS N T e ——

B ey LT T s ey
e

e e

et

e

Fig. 6. a — output neuron’s activity registered form dendritic inputs (top),
and output spike activity (bottom); b — general SNN neurons activity during 10 seconds time
interval; ¢ — R-to-R intervals sequence on SNN output

records with presence of preprocessing stage and
raw-data filtration, without filtration stage and esti-
mation results with deterministic reference method.
MAPE using our approach is less than 2% across all
subjects. For our internal database, the MAPE varies
between 0.5% and 2.1%, with an average of 1.2%.
For MITDB database, the MAPE varies between
0.53% and 5.3%, with an average of 2.32%. Without

JH|II Lidd

Fig 7. MAPE values calculated for three main cases:
purple bars — SNN results after learning stage and
without any filtration; green bars — SNN results with
preprocessing stage for input data; yellow bars —
deterministic algorithm results
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filtration stage separation capability of SNN critically
decrease, and MAPE varies between 2% and 12.2%
with an average of 5%. The higher noises and arti-
facts level in input signal leads to higher increasing
of MAPE for SNN.

¢) Spike encoder. Figure 8 shows a zoomed part of
the ECG signal and respective generated spike trains.
The spike generation process from a segment of the
ECG sample shown on bottom plot. Also highlighted
in this figure are the regions of interest i.e., the QRS
peaks. As discussed before and this can be seen quite
well from this figure, spike temporal coding captures
important spatio-temporal characteristics from the
input signal in the form of inter-spike intervals.

Data density and energy consumption summary
for six subjects from database shown in Table 2.
Maximum clock timer of encoder varied 100, 500
and 1000 Hz, respectively. For each row item in the
table, registered average spike firing rate (in Hz), the
data density (bits per spike) and the energy consump-
tion (in pW). The average spike firing rate is the total
number of spikes generated in the SNN averaged over
the ECG sample with duration 300 seconds. Data
density measures efficiency of the spike encoder and
is defined as:
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Fig. 8. Zoomed part of the ECG signal and respective generated spike trains.
Input signal shown on top plot; filtered and squared signal with R-peaks moments shown
on middle plot; respective spike train generation with time shown on bottom plot.
x-axis — sample number of signal; y-axis — input signal amplitude in uV (top),
filtered signal and spikes normalized signals in arbitrary units (a. u.)
i Table 2
Data density :M " (12) .
input spikes Total energy consumption of system
.Where input spikes parameter is the'number of Ave.rage Data Energy
sp1ke§ generated at the output of our s'plke encoder |4 Record Faﬁ MAX> Isil:-lﬁe density, |consump-
(and. input to the SNN) and ADC bits is the number z o e‘ I%Iz bits/spikes | tion, pW
of bits per ECG sample transmitted post analog to 2
digital conversion (ADC). 1 100 5.3 53.6 1.09
The energy consumption of our approaches- 2 100 59 504 111
timating using methodology for FPGA structure 3 500 7.5 372 1.24
generalpower consumption described in [21], at 4 500 12 40.3 1.27
the constant normal ambient conditions and normal 5 1000 10.4 25.53 1.41
temperature. For fairness of comparison, the energy 6 1000 9.8 27.3 1.39

consumption using [25] excludes the ADC energy,
while the energy consumption using ours exclude
the spike encoder energy.

As seen from the table, the average data den-
sity (averaged over all subjects) for MITDB is 52.0
for Feix max=100 Hz. This result can be interpreted
as follows: on average for every 52.0 bits of raw
ECG data transmitted from the sensor for RR inter-
vals detection using standard QRS-detection tech-
niques, our spike encoder transmits one spike for the
same purpose.

For the three cases, the average energy consump-
tion of the subjects isl.1 uW (1.09 — 1.11 uW),
1.25 pW (1.24 — 1.27 pW) and 1.40 uW (1.39 —
1.41 pW), respectively. This compression saves
energy and data-bandwidth. The higher the density,
the higher the savings. Need to say, the average
energy consumption using our approach (averaged
over all subjects) for MIT database is 1.25 puW lower
than [25], signifying the importance of our approach
for power constrained portable devices.
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Conclusions. The proposed SNN computational
model offers flexibility by allowing implementation
of clinically significant use-cases (as readouts) from
the spatio-temporal properties of ECG integrated
inside a network of spiking neurons. Solution of the
QRS detection use-case was demonstrated. In future,
we will investigate more ECG signal feature extrac-
tion. Additionally, the unsupervised readout is condu-
cive to personalized healthcare, by allowing learning
from subjects directly, without requiring costly data
annotations to train the network. This allows future
devices to be used seamlessly for subjects with and
without cardiac irregularities. Our approach pre-
sents three novel contributions: (a) the technique to
encode spikes from ECG directly, without requiring
to digitize the analog ECG signal and thus achieving

great reduction in data density; (b) preprocessed and
filtered data at input increase SNN learning quality
in a computation model and decrease output recog-
nition error more than 4x times. Moreover, this can
be efficiently implemented on FPGA hardware, with
decreased energy consumption over existing hard-
ware approaches; and (c) an unsupervised readout
for RR intervals estimation case, where system have
stable state as the whole when next R-peak occur.
Additionally, the approach can be readily deployed
to subjects with rare cardiac conditions, where ECG
data is not always available to train a supervised clas-
sifier. These results suggest that our approach can be
very well integrated in future hardware portable and
wearable devices, providing significant battery life
and improving user experience.
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HOBUWI METO/, IOMEPEJTHOI OBPOBKH TA IMITYJIbCHOT'O KOJIYBAHHS
EJJEKTPOKAPAIOT PA®IYHOI'O CUTHAJY AJ151 BACTOCYBAHHSA
MYJIBTACTABLJIbHUX CIAMKOBUX HEMPOHHUX MEPEXK

Hewjooasni pobomu 3 wimyunozo inmenekmy nponoHyoms, wod anapamui ma npoepamHi pilueHHs MOXCHA
0Y1I0 Hasuyamu i HABUAMU 3AMICHb HCOPCTKO 3AKOO08AHUX aneopummie. Knouosum gurnuxom 0as HelpoHHO2O
MOOEN0B8ANHS € NOACHEHHS MO20, K De3nepepeHUti NOMIK MYTbMUMOOAIbHUX 6X00I8 i3 WEUOKO MIHAUBO2O CeH-
COpHO20 cepedosuya Modxce 6ymu 0opodrenutl wmyyHumu Heuponnumu mepexcamu (LIIHM) 6 pexcumi peans-
Ho2o yacy. Haw nioxio rpynmyemvca Ha HAOIHIN 064UCTioganbHitl mooeni chinnoi netiponunoi mepedci (SNN) i3
MYTLIMUCMAbIIbHUMU 8HYMPIWHIMU Heluporamu. Jlocniodxceno 3acmocoghicms modeni SNN 071 po3niznasanms
hizionociunux 3aKOHOMIPHOCMEN CUSHATLY HA WYMHOMY Oe3nepepeHoMy 8XIOHOMY NOMOYI OISl BUTYYEHHS. 342alb-
HUX CUSHATbHUX ocobausocmeli erekmpoxapoioepagiunoeo cuenany (EKT). Kinvkicme eusgnenux osnaxk Oyna
obmedicena 8 yitl pobomi minvku 3 ekcmparxyiero komnaexcy QRS i pisnomipuum nonoscenusaim R-nixie. OOHum
i3 8ADICIUBUX 3A80AHb Y PO3NIZHABAHHI OAHUX CUSHATY € AKICMb NONEepeoHboi 0OpobKU ma cnocody KoOYE8aHHs

exionux oanux ANN. Hoeusna nawiozo nioxooy nonseae y UKOpUCmanti Haoditinoi ma eghekmuenoi nonepeonvoi

006pPOOKU CUPOBUHHUX OAHUX A KOOYBAHHS NPOCOPOBO-dacosux eracmugocmeti cueranie EKI” 6e3nocepeonvo
8 CRAIKOBUX NpoYecax i BUKOPUCIAHHS Ub020 O/ 30Y0XCEHH NOBMOPHO NO8 A3AHUX CHAUKOBUX HEUPOHIE 8
obuucmosanvhiti mooeni SNN, 6ye po3pobrenuil, 6nposadiceruil i nepesipenuil Ha peanvhux cuenarax iz MITDB
ma enympiwnix 3anucax EKI Takoowc 6yno nokazamo egpekmusHicms emany KoOY8aHHs 6XIOHUX OAHUX.

Kniouosi cnoea: erexmpoxapoioepama, wmyyHi HelipoHanvhi mooeni, demexmyganns QRS, oyinka uac-
MOmu cepyesux CKopoueHsb, nikosi Helpouni mepeici, SNN.

HOBBIA METO/I TPEJIBAPUTEJIbHOM OBPABOTKH U UMITYJIbCHOI'O
KOAUPOBAHUSA DJIEKTPOKAPIUOT PAOUYECKOI'O CUTHAJIA
JIJISI IPUMEHEHUS MYJIbTUCTABMJIBHUX CIIAEYHBIX HEHPOHHBIX CETEN

Tlocneonue pabomel no UCKYCCMBEHHOMY UHMELIEKMY NPeoiazarom, ymoobbl annapamHsle u npoSpamMmHble
peuenus MOX*CHO ObLI0 00yHamMb U 0OYYAMb BMECTNO HCECHKO 3aKOOUPOBAHHBIX anzopummos. Kiouegbim 6vi3060m
07151 HELIPOHHO20 MOOCTUPOBAHUSL AGTSLEMCS 00BACHEHUE MO0, KAK HENPEPbIGHbLIL NOMOK MYTbIMUMOOATLHBIX 8X0008
U3 ObICMpO MEHAWEUCS CeHCOPHOU Cpedbl Modicem Oblmb 00PaAOOMAH UCKYCCMEEHHbIMU HEUPOHHbIMU Cemsamu
(UHC) 6 pedxicume peanvroeo apemenu. Haw nooxoo ocrogvleaemces Ha HAEHCHOU BbIYUCTIUMENbHOU MOOETU CIIUH-
HoUl HetiponHoll cemu (SNN) ¢ mynomucmaduivHbiMu 6HYmpeHHUMU Helipornamu. Hccrnedosana npumeHumocms
mooenu SNN 0ns pacnosnasanusa u3UOI0SULECKUX 3AKOHOMEPHOCIEN CUSHAIA HA ULYMHOM HENpepbiBHOM 8X00-
HOM NOMOKe 0151 U3GLeHeHUsl OOUWUX CUSHATLHBIX 0CcObeHHOCmell dnekmpokapouocpaguyeckoeo cuenana (OKT).
Konuuecmeo eviasnennvix npusHaxos oviia 0cpanuyena 6 Smotl pabome moavko ¢ Ikcmpaxyueli komniexca QRS u
pasHomepHbIM nonoxceruem R-nukos. OOHOI U3 8AdHCHBIX 3a0at 8 PACNOZHABAHUU OAHHBIX CUSHAA AGTAEMCA Kade-
CMB0 NPed8apuUmenbHOl 00pabomKy U cnocoba KoOuposanus 6xo0Hslx danHbix ANN. Hosusna naueeo nooxooa
3AKTIOYAEMCSL 8 UCHONb3068AHUL HAOCHCHOU U IPPeKmusHol npedsapumenvHoll 00pabomKU CblpbedblX OAHHLIX U
KOOUPOBAHUSL NPOCMPAHCIBEHHO-8DEMEHHBIX c8oticmg cuenanos DKI HenocpeocmeeHHo 8 CnaeuHvix npoyeccax
U UCHONB30BAHUU IMO20 OJIsL B030YHCOEHUSA NOBMOPHO CEA3AHHBIX CHACUHBIX HEUPOHOB 8 GbIHUCTUMENLHOU MOOeTU
SNN, 6vin paspaboman, nedper u nposepen Ha peaivhvix cuenanax ¢ MITDB u enympennux zanuceit OKI. Taxoice
ObLIa NOKA3AHA IPDEKMUBHOCb IMANA KOOUPOBAHUS BXOOHBIX OAHHDBIX.

Knrwoueewle cnosa: snekmpokapouospamma, UCKyCCmeeHHbvle HeUpoHalbHble MoOenl, 0emeKmuposanus
ORS, oyenxa wacmomul cepOeuHblX COKpaujeHull, nuxkoguvle Helponnvle cemu, SNN.
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